Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Adv Drug Deliv Rev ; 169: 137-151, 2021 02.
Article in English | MEDLINE | ID: covidwho-986888

ABSTRACT

The novel corona virus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the globe at a formidable speed, causing tens of millions of cases and more than one million deaths in less than a year of its report in December 2019. Since then, companies and research institutions have raced to develop SARS-CoV-2 vaccines, ranging from conventional viral and protein-based vaccines to those that are more cutting edge, including DNA- and mRNA-based vaccines. Each vaccine exhibits a different potency and duration of efficacy, as determined by the antigen design, adjuvant molecules, vaccine delivery platforms, and immunization method. In this review, we will introduce a few of the leading non-viral vaccines that are under clinical stage development and discuss delivery strategies to improve vaccine efficacy, duration of protection, safety, and mass vaccination.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Drug Delivery Systems/methods , Vaccines, Synthetic/administration & dosage , Animals , COVID-19/genetics , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , Humans , Vaccines, DNA/administration & dosage , Vaccines, DNA/chemistry , Vaccines, DNA/genetics , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/genetics
2.
Microb Pathog ; 149: 104560, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-857004

ABSTRACT

Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry.


Subject(s)
Chitosan/immunology , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Poultry Diseases/immunology , Saponins/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Bronchitis/immunology , Bronchitis/prevention & control , Bronchitis/veterinary , CD8-Positive T-Lymphocytes/immunology , Chickens , Chitosan/chemistry , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection , Immunity, Cellular , Immunization, Secondary/veterinary , Immunogenicity, Vaccine , Nanoparticles/chemistry , Poultry Diseases/prevention & control , Saponins/chemistry , Vaccination/veterinary , Vaccines, DNA/chemistry , Vaccines, DNA/genetics , Viral Vaccines/chemistry , Viral Vaccines/genetics
3.
Clin Exp Pharmacol Physiol ; 47(11): 1874-1878, 2020 11.
Article in English | MEDLINE | ID: covidwho-696790

ABSTRACT

A novel concept in DNA vaccine design is the creation of an inhaled DNA plasmid construct containing a portion of the coronavirus spike protein for treatment and vaccination. The secretion of a spike protein portion will function as a competitive antagonist by interfering with the binding of coronavirus to the angiotensin-converting enzyme 2 (ACE2) receptor. The secreted protein binding to the ACE2 receptor provides a unique mechanism of action for treatment to all strains of coronavirus in naïve patients, by blocking the ACE2 receptor site. An inhaled plasmid DNA vaccine replicates the route of lung infection taken by coronavirus with transfected cells secreting spike protein portions to induce immunity. Unlike most DNA vaccines with intracellular antigen presentation through MHC I, the current vaccine relies on the secreted proteins presentation through MHC II as well as MHC I to induce immunity. Lung specific production of vaccine particles by inhaled plasmid DNA is appealing since it may have limited systemic side effects, and may induce both humoral and cytotoxic immunity. Finally, the ease and ability to rapidly produce this plasmid construct makes this an ideal solution for managing the emerging threat of coronavirus.


Subject(s)
Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/therapeutic use , Viral Vaccines/administration & dosage , Viral Vaccines/therapeutic use , Administration, Intranasal , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Chitosan , Coronavirus Infections/prevention & control , Humans , Pandemics , Pneumonia, Viral , SARS-CoV-2 , Vaccination/methods , Vaccines, DNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL